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Hedrick KR, Zhang K. Megamap: flexible representation of a
large space embedded with nonspatial information by a hippocampal
attractor network. J Neurophysiol 116: 868—891, 2016. First pub-
lished May 18, 2016; doi:10.1152/jn.00856.2015.—The problem of
how the hippocampus encodes both spatial and nonspatial information
at the cellular network level remains largely unresolved. Spatial
memory is widely modeled through the theoretical framework of
attractor networks, but standard computational models can only rep-
resent spaces that are much smaller than the natural habitat of an
animal. We propose that hippocampal networks are built on a basic
unit called a “megamap,” or a cognitive attractor map in which place
cells are flexibly recombined to represent a large space. Its inherent
flexibility gives the megamap a huge representational capacity and
enables the hippocampus to simultaneously represent multiple learned
memories and naturally carry nonspatial information at no additional
cost. On the other hand, the megamap is dynamically stable, because
the underlying network of place cells robustly encodes any location in
a large environment given a weak or incomplete input signal from the
upstream entorhinal cortex. Our results suggest a general computa-
tional strategy by which a hippocampal network enjoys the stability of
attractor dynamics without sacrificing the flexibility needed to repre-
sent a complex, changing world.

continuous attractor; Poisson; activity bump; combinatorial mode;
CA3

NEW & NOTEWORTHY

The megamap is a quasi-continuous attractor network built
on the experimental fact that each place cell has multiple,
irregularly spaced place fields in a large environment. This
flexibility allows the megamap to seamlessly cover much
larger environments than standard rigid continuous attrac-
tor models. The megamap has additional inherent proper-
ties, such as robustness to degraded inputs and ease of
storing nonspatial information, that render it suitable as a
basic building block for modeling hippocampal activity.

AN ATTRACTOR NETWORK is a widely used theoretical framework
for constructing neural models of spatial, declarative, and
episodic memory. Attractor dynamics arise naturally in models
of recurrent neural networks with Hebbian-type associative
synaptic plasticity (Cerasti and Treves 2013; Kali and Dayan
2000; Knierim and Zhang 2012). The resulting attractor net-
works exhibit emergent properties desirable for memory stor-
age, such as full recalls from partial cues and robustness
against noise and damage (Hopfield 1982; Marr 1971; Mc-
Naughton and Nadel 1990), and they have become increasingly
useful for neurophysiology by offering a practical framework

Address for reprint requests and other correspondence: K. R. Hedrick,
Department of Mathematics, Southern Methodist University, 3200 Dyer St.,
Dallas, TX 75275 (e-mail: khedrick@smu.edu).

868 0022-3077/16 Copyright © 2016 the American Physiological Society

for experimental design and data interpretation (Peyrache et al.
2015; Stella et al. 2012; Yoon et al. 2013).

The hippocampus, especially the CA3 area with its promi-
nent recurrent collaterals and proposed role in associative
memory (Johnston and Amaral 1998; Nakazawa et al. 2004),
has long been modeled as a discrete attractor network repre-
senting nonspatial information and as a continuous attractor
network representing space (Knierim and Zhang 2012; Leutgeb
and Leutgeb 2007; Rolls 2007). The latter class of models has
largely been built on the seminal theory commonly referred to
as the multichart model (Samsonovich and McNaughton 1997;
Tsodyks 1999). The fundamental idea is that a given spatial
environment is represented by a cognitive map (chart) in which
each place cell is located at its single place field center (Fig.
1A). The strength of recurrent connections then decays expo-
nentially with distance between cells on the chart, consistent
with Hebbian plasticity. The chart has become a useful con-
vention by which one may visualize place cell activity as a
localized activity bump on the chart centered at the animal’s
current location. Moreover, the model offers a plausible expla-
nation for experimental data, such as the relative stability of
place cell activity in the CA3 compared with that in the CAl
(Lee et al. 2004; Vazdarjanova and Guzowski 2004). Numer-
ous studies have used the chart as a building block, modeling
additional biological mechanisms and multiple charts to capture
various phenomena, e.g., global remapping (Samsonovich and
McNaughton 1997), partial remapping (Stringer et al. 2004), rate
remapping (Renné-Costa et al. 2014; Solstad et al. 2014), and
incorporation of nonspatial information (Rolls et al. 2002). Other
studies have shown how the chart may self-organize (Cerasti and
Treves 2013; Kali and Dayan 2000; Stringer et al. 2002) and have
generalized the attractor to model context dependence (Doboli et
al. 2000).

The ideal chart is single peaked, i.e., each place cell exhibits
a single place field within a single environment. This simpli-
fication, which is common to most attractor models, is justifi-
able in a small, standard environment (~1 m?), in which a
majority of place cells exhibit no more than one place field.
The chart does not extend naturally to large environments.
Since each cell appears only once on the chart, it can only
represent a small area before all cells are used (McNaughton et
al. 2006). Assuming ~20% of cells in the CA3 have place
fields within a 1-m” environment, the entire CA3 could repre-
sent at most 5 m?, a much smaller area than the foraging range
of a rat (Davis 1953; Innes and Skipworth 1983; Lambert et al.
2008; Taylor 1978).

One possibility is that place fields scale with the environ-
mental size (Muller et al. 1987; O’Keefe and Burgess 1996). A
scaled representation would certainly increase the capacity of

WWW.jn.org

LT0Z ‘L Jequiaidas uo 9c£°022 0T Aq /Bio ABojoisAyd-ulj/:dny wouy papeojumoqd



mailto:khedrick@smu.edu
http://jn.physiology.org/

MEGAMAP: FLEXIBLE REPRESENTATION OF A LARGE SPACE 869

Partitioned Map

A \geal Chart B

15 6 7
?
9 10 11 121
14 15 16

o
2}

o
N

Probability

C Flexible Representation

0 10

Area of the Represented Region (m

%)

Fig. 1. Basic models of place cell representations. In this schematic, 16 place cells represent a large uniform space, where cell numbers are placed at respective
place field centers, and the fields of cells /-4 are additionally indicated by color. A: models of single-peaked attractor networks assume each cell represents at
most one location. This rigid representation limits the environmental size, because it is unclear how the network would represent new locations after all cells
have been used. B: one possible remedy is to partition the region, treating each subregion as a distinct environment in which each cell has at most one place field.
The resulting representation is piecewise rigid with artificial boundaries between subregions. C: place cells are flexibly recombined for the flexible representation
on which the megamap is built. A single cognitive map without artificial boundaries or size limitations represents the large space. D: we construct a benchmark
model for the flexible representation by assuming the number of place fields (k) for a given cell in the represented region follows the Poisson distribution (Eg.

1). The average field density is given by A = —In(0.8) m % ~ 0.22 m >

any cognitive map, but it would also coarsen the map’s spatial
resolution. Another possibility is that the animal partitions the
environment, treating each subregion as a distinct environment
represented by a distinct chart (Fig. 1B). This simple model
removes size limitations by imposing artificial boundaries on a
seemingly continuous space, and it is unclear how such a
partitioned cognitive map might self-organize in a novel envi-
ronment. Furthermore, while the boundaries between charts
may be difficult to detect (Samsonovich 1998), they have not
been apparent in recent experiments conducted in large envi-
ronments (Fenton et al. 2008; Park et al. 2011; Rich et al.
2014). Rather, these experimental data seem to indicate that the
animal represents a larger than standard environment through a
single cognitive map in which many place cells exhibit multi-
ple, irregularly spaced place fields. Thus an attractor network
based on a single-peaked code is appropriate for modeling
head-direction cells (Peyrache et al. 2015; Redish et al. 1996;
Seelig and Jayaraman 2015; Skaggs et al. 1995; Zhang 1996),
grid cells within a module (McNaughton et al. 2006; Yoon et
al. 2013), and even place cells representing a small environ-
ment (McNaughton et al. 2006; Samsonovich and Mc-

Naughton 1997; Tsodyks 1999); but it becomes unnatural for
place cells representing a large environment.

We offer a more natural theoretical framework for an attrac-
tor network representing a large space. We propose that hip-
pocampal networks are built on a megamap, or a single,
quasi-continuous attractor map in which place cells with struc-
tured recurrent connections are flexibly recombined to repre-
sent a large space (Fig. 1C). The megamap’s underlying place
code, which we refer to as the flexible representation, is based
directly on experimental data (Fenton et al. 2008; Park et al.
2011; Rich et al. 2014). However, the megamap is the first
model to explicitly examine the structure and properties of an
attractor network built on this flexible representation. Our
focus in this study is to present the megamap as a basic unit of
a cognitive map by elucidating the structure of the optimal
recurrent connections, demonstrating the novel manner in
which an activity bump on the megamap may be visualized,
and comparing the properties of the megamap with those of the
alternative single-peaked chart. The model also reveals two
emergent properties of the multipeaked attractor network: its
adaptation to environmental changes by recombining learned
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memories, and its incorporation of nonspatial information at no
additional cost. We close by discussing experimental predic-
tions and implications of the megamap.

MATERIALS AND METHODS

Poisson distribution of place fields on the megamap. The megamap
represents a large space through flexible recombinations of place cells.
In other words, each cell in the megamap has multiple, irregularly
spaced place fields, and there is no spatial correlation among place
field pairs. We construct a benchmark model by setting place fields
according to the Poisson distribution, for which the probability that a
given place cell has k place fields in a region of area A is given by

P(k) = e ™(AA)"/k! )

The single parameter, A, is the average number of place fields per unit
area for a single cell. By using Eq. 1 with k = 0, A = —In[P(0))J/A,
where P(0) is the proportion of silent cells in a region of area A.
Unless otherwise specified, we set A = —In(0.8)/(1 m?) ~ 0.22 m™ 2.
This estimate is derived from the observation that roughly 80% of
CA3 place cells are silent in standard recording enclosures (A ~ 1 m?)
(Alme et al. 2014; Vazdarjanova and Guzowski 2004). For simplicity,
we assume A is constant for all cells, rather than variable (Rich et al.
2014). The place fields of each cell are centered at random locations
throughout the environment.

Flexible representation of a large space. We first consider the
implications of a flexible, multipeaked place code without modeling
an underlying dynamical system. Rather, we initially consider a
flexible representation in which each place cell exhibits Gaussian
place fields distributed according to the Poisson distribution.

In this context the representational capacity refers to the number of
locations uniquely encoded on the cognitive map. For the single-
peaked and flexible representations, we estimate the representational
capacity by computing the number of unique subsets of place cells
that may be co-active in an activity bump. We compute the analogous
measure of the representational capacity for grid cells as done by Fiete
et al. (2008). Consider a population of N grid cells divided evenly
among M modules. Unique subsets of co-active grid cells within a
module appear to encode distinct phases of the animal’s location with
respect to the period (spacing) of the module. Since there is a rigid
spatial relation among phases within a module (Yoon et al. 2013), a
single module can uniquely encode N/M phases, analogous to the
single-peaked place code. The entire population may encode the
animal’s actual location through a unique set of phases over all
modules, bounding the representational capacity by Cyiq = (NIM)Y™.
[One may compute the capacity in terms of distance uniquely repre-
sented by determining the uncertainty of a downstream neural popu-
lation in reading the location encoded by place cells or the phase
encoded by grid cells (Fiete et al. 2008). Assuming a similar uncer-
tainty for either population, the qualitative results would be
unchanged.]

In this report the spatial resolution refers to the least mean squared
error between the animal’s location [x = (x,, x,)] and the decoded
location [ = (£, £,)] given any scheme for decoding the stochastic
spike vector s, whose elements are the number of spikes for each place
cell in the time window 7. The spatial resolution is determined
analytically by computing the Fisher information (Kay 1993). Regard-
less of the place field distribution, element (i, j) of the 2 X 2 Fisher
information matrix carried by N place cells is given by

][50
AC I

where the average firing rate of cell n with place field centers
{€,n ) | and peak firing rate a is given by

[F(x)], =712 )

|x—¢

2
ra(x) = a2, exp (Tml) 3

Neglecting the rare overlapping place fields of individual cells
[which create slight variations in F(x) over the region], only one term
of the summation in Eg. 3 is nonzero. This permits Eg. 2 to be
simplified to a single summation over all place fields of all cells.
Assuming X is at least a place field width from any boundary, in the
limit of a large population,

[F(1,= 3 i (y%f_yfh(”) iy

:%ffyl')’jh()’)dyv

where h(y) = exp[ — lyIA207)], A is the area of the region, Ny, is the
number of place fields for the entire population, and p = Ny, /A is the
density of all place fields in the population. Therefore,

F(x) = (ZWTap)((l) ?)

Finally, the expected value of the squared error is bounded below by

min E[ |& — x|*] = min trace(cov(R)) = trace(F~") = 1/(nTap)
4

by the Cramér-Rao lower bound, assuming X is an unbiased estimator
(E[X] = x).

An upstream neuronal population can theoretically decode the
stochastic spike vector s to obtain this optimal accuracy (Eg. 4) by
computing the maximum likelihood estimate (MLE), which has bio-
logically plausible implementations (Jazayeri and Movshon 2006;
Pouget et al. 1998). The MLE is given by

= argmax 1n[P(st)] = argmax 1nL]1jl P(s,,ly)}
= arginaxzi,v:, {s, n[r,(y)T] = r.(y)T}

assuming the place cell spike trains are independent Poisson processes
such that

)

P(sn\x) = () T(rn(x) T)“"/s,, !

is the probability that cell # has s,, spikes in the time window T given
the animal’s location x.

We numerically test the agreement between the analytical spatial
resolution (Eq. 4) and the mean squared error in the MLE (Eg. 5) for
the standard, scaled, and flexible place cell representations (see Fig.
4). For the standard and scaled representations, each of N place cells
has a single place field, where the place field centers are distributed
uniformly throughout the region. The place field width is held con-
stant for the standard representation, while the place field width (as
controlled by o in Eq. 3) for the scaled representation increases with
the environmental area such that the number of co-active cells at any
location is constant. For the flexible representation, which is used to
generate the megamap, place fields of each cell follow the Poisson
distribution (Eq. 1).

We place the animal at 50 random locations (not necessarily
locations on which place fields are centered) at least 20 cm from any
boundary of the region. At each location we compute the MLE for
each of 50 stochastic spike vectors, s. We solve Eg. 5 by finding the
maximizer over the vertices of a square grid of length 10 cm and
pixel size 0.05 X 0.05 cm? centered at the animal’s true location.
We also perform a coarse exhaustive search with a pixel size of
4 X 4 cm” over the entire region to catch outliers. We then plot the
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mean squared error between the MLE and the animal’s location,
averaged over all 2,500 iterates. This process is repeated over
regions varying in size with 7 = 250 ms, N = 22,500, a = 15 Hz,
and ¢ = 5 cm.

Dynamical system of the megamap. We examine how an associa-
tive network of place cells may contribute to the formation and
stability of the activity bump on the megamap by simulating a
standard firing rate model (Li and Dayan 1999; Wilson and Cowan
1972) consisting of a network of N place cells with recurrent excita-
tion, global feedback inhibition, and external input. The state vector,
u € RV, loosely represents the depolarization of each place cell and
is governed by

m'(r) = —u(r) + WE(z) — w'f' (1)1 +1(z), (6)

where 7= 10 ms and 1 € RV*! denotes a vector of all ones.

The recurrent excitation, Wf, provides the internal network drive.
The weight matrix, W € RY*", describes the strength of connections
among place cells. The activity vector, f € RV™!, represents the firing
rate of place cells and depends on the state through the threshold
linear gain function,

f= g(ll) :fpeak[u]+’ (7)

where [-], = max(-, 0) and f,,..,, = 15 Hz. We use a threshold linear
gain function because of its simplicity for analysis, but similar
qualitative results would be obtained using a sigmoid gain function.

All interneurons are modeled as a single inhibitory unit providing
global feedback inhibition so that only the external input and recurrent
hippocampal input provide a spatial signal. Future versions of the model
may incorporate a weak spatial signal carried by hippocampal theta cells
(Kubie et al. 1990). The activity of the inhibitory unit, £, depends on the
total network activity through the threshold linear gain function,

f1= g = [1"— o],

The inhibitory threshold is set to 90% of the total desired activity (Egq.
9). Explicitly, & = 0.9-1"f(x), which is constant for all x. The
inhibitory activity is scaled by w' to provide global inhibition to all
place cells, controlling the overall network activity.

The external input, I € RY*!, carries sensory information about
the animal’s location or self-motion. We model the collective effect of
the various external inputs into the hippocampus as a Gaussian shaped
pattern that peaks at the animal’s location on the megamap, and we
focus our attention on the inherent dynamics of the attractor network.
The external input into cell » when the animal is at location x is
modeled by

M - | Com — X | :
In(X;Ipeak) = IpeakEmil eXp T ©
Yo

so that the input peaks at the place field centers of cell n, {c,,,},. -
The parameter o, is set such that the external input and the network
state have the same width.

We integrate the dynamical system using the staggered Euler
scheme (Hines 1984) with a time step of 0.1 ms. We consider the state
to be an equilibrium state if its relative change over 50 ms is less than
10~°. The activity of an ensemble of hippocampal place cells can be
decoded to predict the animal’s perceived location (Brown et al. 1998;
Davidson et al. 2009; Wilson and McNaughton 1993; Zhang et al.
1998). We decode the network activity through a process called
maximum likelihood Euclidean distance decoding (Cerasti and Treves
2013; Rolls et al. 1997). We find the location, X, at which the desired
activity, f(&) (Eq. 9), best approximates the network activity, f(z).
Explicitly, the location encoded by the activity bump satisfies

(1) = argminy|[f(r) — £(x)[/If(x)].

We compute % by first finding &', the minimizer over all vertices in the
region on which a place field is centered. Since the activity bump may

encode locations between place field centers, we then refine the search
about &'. The final decoded location is the minimizer over the vertices
of a square grid of width d with pixel size 0.1 X 0.1 cm? centered at
&', where d is the distance between neighboring place field centers
along either dimension.

Construction of the ideal megamap. We construct a benchmark
model to determine whether a network with a flexible representation
can exhibit stable, Gaussian-like place fields. Unless otherwise spec-
ified, the megamap represents a 3 X 3-m? region and comprises
11,240 place cells (9,731 active cells and 1,509 silent cells).

We first set the desired place field centers. The number of place
fields for each cell n (M,,) is set according to the Poisson distribution
(Eq. 1) with density A = —In(0.8) m ™2 ~ 0.22 m 2. Each place field
center {c,,,}»—; is then assigned to a random vertex of a rectangular
grid over the entire region such that exactly one field is centered at
each vertex, resulting in a place field center each 4 cm?.

When the external input is spatially tuned, the depolarization of a
place cell with a single place field should ideally decay as a Gaussian
with the distance between the place field center and the animal’s
location. Under the simplification that multiple place fields of a cell
sum linearly, the desired activity of a given cell n when the animal is
at location x is given by

F2() =20 Frane(| € = x]), )

where the state and activity tuning curves are respectively given by
2

tne(d) = (1 + uo)exp<;—jz> iy and fune(d) = g(itune(d)).

u

The gain function, g(u), is defined in Eq. 7. The parameter u, = 0.2
permits subthreshold depolarization, and the parameter o, = 5.94 cm
is set such that f,,. best approximates a Gaussian tuning curve with
a standard deviation of 5 cm, as expected for place cells in the dorsal
hippocampus (Muller 1996).

We set the inhibitory weight (w") and recurrent weights among
place cells (W) such that the desired activity vectors (Eg. 9) corre-
spond to fixed points of the dynamical system (Eg. 6) when the
external input is given by Eq. 8 with /., = 0.3. For the resting state
of a place cell to be —u,, the inhibitory weight is given by the explicit
expression,

wh= uO/(th_'* 9).

Since the summation of the ideal network activity (1'f) is constant
throughout the region (within a place field width of a boundary), w' is
independent of the animal’s location.

The optimal recurrent weights onto a given cell j are initialized to
zero and set iteratively through the delta rule,

AW, = 53, [A(x) - 7(x) JFu(x), (10)

where x’ are all vertices, or locations at which a place field is centered,
within the set learning region. Unless otherwise specified, the learning
region is any location at least 20 cm from any boundary of the
environment. The projected activity vector is given by

f7roi(x) = g(Wx) — wigl(f(x))1 + 1(x:03) ).

The resulting weights may be considered optimal since f(x’) cor-
responds to a fixed point of Eg. 6 if f(x') = fP™i(x’), and the delta rule
minimizes the least squared error between the projected and desired
activity vectors for each cell j. The learning rate (s) is sufficiently
small such that f"i(x’) — f(x’) smoothly. No sparsity structure is
enforced except the exclusion of self-connections. A predefined spar-
sity structure could be incorporated by holding f, = 0 when setting
W, if cell k does not connect to cell j. The results would be unchanged
on average, but all-to-all connections are used for this study to avoid
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an additional source of noise. The weights are held constant after the
learning phase.

We compare this benchmark model to a second megamap con-
structed through a learning rule adapted from a basic Hebbian rule
widely used in attractor models of place cells (Kali and Dayan 2000;
Rolls et al. 2002; Samsonovich and McNaughton 1997; Solstad et al.
2014; Stringer et al. 2004). The recurrent weight between any two
cells j and k is given by

Wi =Wy = DLy Dk, Weane(| € = €1a|) un

for some tuning function, w,,,.. When w,,,,. is a Gaussian function, W
approximates the weights given uniform Hebbian learning (Cerasti
and Treves 2013; Kali and Dayan 2000). We set Wy, = Wyingie» the
optimal weights for the single-peaked place code when I, = 0.3. To
compute w,.., We iteratively apply Eq. 10 over a circular region
with a radius of 40 cm represented by a network of single-peaked
place cells. The resulting vector of optimal weights onto the cell
representing the region’s center provides a discrete set of data points
for the monotonically decreasing function, wy;,.i.(d), where d denotes
the distance between the place field centers of the pre- and postsyn-
aptic cells. For d = 12 cm, we set wg;,,.(d) as the polynomial of
degree 3 that is the least squares approximation to the data points with
d = 12 cm. We define w;,,,.(d) = 0 for d > 12 cm.

The fundamental difference between the optimal weights generated
by Eq. 10 and the Hebbian weights generated by Eq. 11 is that w,,q.
is the average spatial profile for the optimal weights and a lower
bound for the Hebbian weights. This creates differences in the
attractor dynamics as the megamaps become very large, but the two
megamaps behave similarly in small to moderately large environ-
ments (up to at least 9 m?).

Gradual extension of the megamap. We gradually extend the
megamap to model the animal continually learning its local surround-
ings in two settings. First, we model the animal moving from one end
to the other of a track 2,000 X 0.7 m>. We begin by setting place fields
over the entire track according to the Poisson distribution. To con-
struct the optimal megamap, M°P', we initialize the weight matrix by
Eq. 10 with the learning region set to all vertices within the initial 100
cm of the track that are at least 15 cm from any boundary of the track.
For each subsequent iteration, we update the weight matrix by Eq. 10,
shifting the learning region to the right by 50 cm. To construct the
Hebbian megamap, M*"™, the weights are updated at each iteration to
incorporate all new place field pairs in the learning region into the
summation of Eq. /1.

We test the megamap by computing the equilibrium state when the
external input (Eq. 8) has amplitude I, = 0.3 and the animal is
placed at an initially learned location or at a recently learned location.
Ideally, the equilibrium state approximates the ideal activity (Eq. 9).
The megamap has lost all its inherent spatial stability if the equilib-
rium state on the megamap is indistinguishable from that of a
feedforward model for which the recurrent excitation has lost all
spatial tuning, leaving only the spatial signal of the external input. For
the most direct comparison of the two models, we compute the
equilibrium state of the feedforward model (@) from that of the
megamap (u) by replacing the recurrent excitation of the latter with a
global shift over all place cells. Explicitly,

@ = mean(Wf)1 — w'f'1 + I(x;0.3), (12)

where f and f" are the equilibrium activity of the place cell network
and of the inhibitory unit of M°"* when the animal is placed at the
beginning of the track (x = x™™") after learning the entire track. The
corresponding equilibrium state of the megamap satisfies

u = Wf — w'f1 + 1(x"";0.3). (13)
Second, we iteratively extend a square environment to compare the

two-dimensional megamap to the megamap representing the linear
track (which may be considered as approximately one-dimensional).

At each iteration n, we add 1-m-wide strips to the bottom and right
edges of the square. We do this by sequentially adding (2n — 1)
subregions of size 1 X 1 m? to extend the megamap from (n — 1)* m?
to n* m?. To add each 1-m? novel subregion to M°P', we use Eq. 10
with the learning region set to all vertices that are either /) in the novel
subregion and at least 15 cm from the boundaries of the learned
environment or 2) in the learned environment no more than 15 cm
from the novel subregion. This protocol avoids artificial boundaries
between subregions. We construct M*“™ by using Eq. 11.

Emergent properties in large environments. We examine the re-
sponse of both small and large megamaps to conflicting external
inputs. For the simulations presented in Figs. 10 and 11, the small
megamap represents a 3 X 3-m? region and is used throughout much
of the article. The large megamap is constructed by gradually learning
a track 500 X 0.7 m?, as presented in Fig. 8 (M°P"). Since the learning
region excludes the top and bottom 15 cm, the large megamap
represents ~200 m”. Note that even the small megamap represents an
area much larger than the standard environments typically modeled
(~1 m?). The megamaps are driven by the conflicting external input,

Iconf = I(Xl;léeak) + I(XZ;Igeak)’ (14)

where I is given by Eq. 8. The two locations are well-separated and
recently learned. For the small megamap, x' = [1 m, 1.5 m] and
x? = [2.2 m, 1.5 m]. For the large megamap, x' = [498 m, 0.35 m]
and x2 = [499.2 m, 0.35 m].

For the simulations presented in Fig. 12, the megamaps are con-
structed by gradually extending a square environment, as presented in
Fig. 9. A proportion (p,) of elements n of the input vector are
randomly chosen to represent x' via I, (x'; 0.3), whereas the remaining
elements are set to 1,(x*; 0.3). For each of 50 trials for each value of
py» x' and x? are randomly set to be at least 60 cm apart and 25 cm
from an outer boundary of the environment. For the bottom two rows
of plots, the means over the 50 trials are computed by considering
only place cells that are active in the respective desired activity bump
(Eq. 9). The proportion of active cells is the fraction of these cells with
a nonzero firing rate in the equilibrium activity bump. The relative
error of the activity of these cells compared with their desired activity
at the respective location is also shown. When p, = 0.5, trials are split
into those for which the local error in the activity bump over x' is less
than that over x?, and vice versa. The initial state is random for all
trials.

Incorporation of nonspatial information. When the animal is learn-
ing a new environment, hypothetical cells representing a salient
nonspatial cue should be active when the animal is near the cue. This
subset of active cells would then be incorporated into the megamap
through associative learning, forming place fields at the corresponding
location of the cue. We construct the megamap to model the effective
result of this associative learning. We then demonstrate that the
megamap can sustain a continuous representation of space while
simultaneously exhibiting activity patterns representing nonspatial
cues at the corresponding discrete set of locations.

We initialize the megamap by setting place field centers over the
entire region according to the Poisson distribution. For the cell
arrangement, each place cell is assigned to a pixel within a rectangular
grid of dimension a, X a,, where a,a, = N, the number of cells in the
population (including cells with no place fields). To prepare each
image (nonspatial pattern) to be embedded, we convert the original
image to black and white, crop it to dimension a, X a,, and truncate
it so the number of nonzero pixels is no greater than the number of
co-active cells in the desired activity bump (Egq. 9).

We then sequentially embed each image into the megamap at the
given location x by reassigning proximal place fields, or fields whose
center lies within 20 cm of x, to cells representing the image. This is
done in such a manner that cells corresponding to a brighter pixel in
the image have a place field closer to x, and the megamap retains the
Poisson distribution of place fields near x. Explicitly, let N;,, be the

img

number of cells with a nonzero value in the image representation. For
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n=1,2,.., Ny,,, we reassign all proximal place fields of the cell with
the nth highest desired activity at x (Eq. 9) to the cell with the nth
brightest pixel in the image. For any remaining cell with a nonzero
desired activity at x, we reassign its proximal place fields to a random
cell whose value in the image representation is zero. This results in the
appearance of scattered noise around the nonspatial activity pattern
given the cell arrangement. After setting the place fields to embed
each image, we simulate the animal learning the region by setting the
recurrent weights according to Eg. /0.

We present two examples of the dual interpretation. For example 1,
a, =300, a, =75, N = 22,500, and A ~ 0.44 m 2 A place field is
centered each 1 cm? within the 300 X 70-cm? region. For example 2,
a, = 191, a, = 191, N = 36,481, and A = 0.56 m 2 A place field
is centered each 0.49 cm? within the 140 X 70-cm® region. To
generate the movies, we simulate the animal moving from left to right
across the region with a velocity of 10 cm/s and set the external input
by Eq. 8 with ., = 0.3. Every 0.1 cm, we visualize the spatial and
nonspatial information carried by the network by plotting the network
activity vector according to the megamap arrangement and cell ar-
rangement, respectively. To generate the figures, we compute the
equilibrium activity when the animal is at the given location, setting
the external input by Eq. 8 with /., = 0.3.

Distinguishing features of the partitioned attractor map and the
megamap. We contrast the partitioned attractor map to the megamap
for a square environment and for a long linear track (Fig. 16). For the
square 15 X 15-m? environment, one place field is centered each 4
cm? for both the megamap and the partitioned map. Place fields are set
according to the Poisson distribution (Eq. 1) with A = —In(0.8) m 2.
We model an ensemble of N = 10%/(4\) = 11,204 place cells to obtain
a pixel size of 4 cm?. To construct each 150 X 150-cm? chart of the
partitioned map, (150%/4) = 5,625 of the 11,204 place cells are
randomly selected to have a single place field. All place fields are
centered on a random grid vertex.

For the 100-m X 30-cm linear track, one place field is centered
each 0.5 cm for both the megamap and the partitioned map. Approx-
imating the track as a one-dimensional environment, the Poisson
distribution (Eq. 1) becomes

P(k) = e M\ €) k),

where A, = A(w + d) given the track width (w = 0.3 m) and place
field diameter (d = 0.2 m). We model an ensemble of N = 10%/(0.5
A,) = 1,793 place cells to obtain a pixel size of 0.5 cm. To construct
the partitioned track, (200/0.5) = 400 of the 1,793 place cells are
randomly selected to represent each 200-cm segment of the linear
track. All place fields are centered 15 cm from the top and bottom of
the track.

The Poisson distribution implies that, in a two-dimensional envi-
ronment, the distance from the center of a given place field to that of
the closest place field of any single place cell (whether it is the same
cell or a different cell) with place field density A follows the Rayleigh
distribution, because its probability density function is given by

p(x) = (ZWAx)ef’T’\xz. (15)

To see this, note that the probability that this distance to nearest
neighbor is between x and x+6 is given by

P(x,x + 6) = e””\xz{l _ e*ﬂ')\[(x + 5)212]},

or the probability that the cell has no place fields in a circle of radius
x and has at least one place field in a circle of radius x+8. Equation
15 follows from computing limg__,(1/8)P(x, x+8). On a one-dimen-
sional track, the distance to nearest neighbor instead obeys the
exponential distribution,

pi(x) = (2A)e” ™, (16)

We compare these probability distributions to distributions ob-
tained numerically for the partitioned attractor map and megamap. For

a given place field, we compute either the minimal distance to a
second place field of the same cell or the minimal distance to a place
field of a single random second cell. This is done for all place fields
at least 250 cm from all edges of the two-dimensional region or 250
cm from the beginning and end of the track to avoid biasing the data
for larger distances.

RESULTS

Flexible representation of a large space. We begin by
examining the ideal place cell activity in a large space without
yet considering its stability or how it may be generated by
plausible neural mechanisms. In particular, we describe the
flexible representation on which the megamap is built and
compare its capacity and spatial resolution to those of the
single-peaked representation on which the standard attractor
chart is built.

The flexible representation assumes that a place cell may
exhibit multiple, irregularly spaced place fields within a large
environment, and there is no spatial correlation among place
fields of different cells. We use the homogeneous Poisson
distribution of place fields (Eq. I; Fig. 1D) as a benchmark
model since it maximizes the flexibility of the megamap and
provides a reasonable approximation to experimental data (Fig.
2, Table 1; see piscussioN). Accordingly, the most likely
number of place fields for a cell in a region of area A is given
by the integer part of A/A, where A denotes the cell’s place field
density. Other plausible place field distributions, such as the
exponential distribution (Maurer et al. 2006) or the Poisson-
gamma distribution (Rich et al. 2014), would not affect the
qualitative results of this study.

The flexible representation of the megamap is ideal for
uniquely representing a large environment because place cells
are used independently of one another, making it a combina-
torial code. We estimate an ensemble’s representational capac-
ity by assuming a downstream neural network can distinguish
between two activity patterns if they differ in their respective
subset of co-active cells. Since the spatial relation among cells
on the standard attractor chart is rigid, a chart with N place
cells can have only N unique activity patterns. If place cells
flexibly recombine, however, a population of N place cells
supports

i = N/ (V=) ) =N 17

unique activity patterns by Stirling’s approximation, where n is
the number of co-active cells in each activity pattern, p = n/N,
c,=p P11 —p)~" P and ¢, = 2mp(1 — p). This crude
estimate implies that 10,000 cells with a flexible representation
can have 6 X 10**! activity patterns, assuming 1% of cells are
co-active in each activity pattern. Hence, this relatively small
population can theoretically encode the entire surface of the
Earth, since assigning a unique activity pattern to each square
millimeter requires only ~10'? patterns. Of course, obtaining
this representational capacity depends on the hippocampal
ability to orthogonalize its representations of new locations,
likely mediated by a pattern separation process in the dentate
gyrus (Aimone et al. 2011; Cerasti and Treves 2010; Leutgeb
et al. 2007).

The flexible representation shares this large representational
capacity with any combinatorial code for space, such as the
memoryless Bayesian position estimation (Davidson et al.
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Fig. 2. Poisson fit to experimental data from a moderately large open-field environment (Fenton et al. 2008). The data was recorded from place cells in the CA1
as a rat explored a cylinder with a 68-cm diameter and a chamber whose floor had dimensions 150 X 140 cm?. Place cells had multiple, irregularly spaced place
fields and showed global remapping between environments. We fit the experimental data with the Poisson distribution (Eg. 7), using the respective areas for the
cylinder and chamber floor and the place field density, A = 1.65 m 2. This parameter implies that ~50% of CA1 place cells would be silent in a 0.4-m? region,
which is consistent with the 30-50% range found experimentally (Guzowski et al. 1999; Vazdarjanova and Guzowski 2004; Wilson and McNaughton 1993).
A and B: the Poisson distribution captures the general trend of the data. Since the number of silent cells was not measured in the experiment, we extrapolated
the probability that a cell has no fields from the experimental data using the Poisson distribution with A = 1.65 m~2 C: the model also predicts the distance
from one place field to the closest place field of the same cell, which is approximated by the Rayleigh distribution (dashed red curve; Eq. 15). To take into account
the close boundaries of the chamber, which lower the probability of small distances, the solid red curve was generated from numerical simulations in which the
place fields of 150,000 cells were distributed throughout the chamber floor according to the Poisson distribution. Additional statistics are given in Table 1.

2009). The upstream grid cell network also has a capacity far
exceeding the single-peaked place code (Fiete et al. 2008;
Mathis et al. 2012). In particular, a population of N grid cells
divided among M modules has the representational capacity
(computed analogously, see MATERIALS AND METHODS),

Cyia = (N/M)M = M~MN, (18)
Whereas C,,;q is exponential in the number of modules (M),
Chex 18 approximately exponential in the number of cells (V).
This implies that Cy, > C,yq (Fig. 3), since N> M ~ 4 —
5 (Stensola et al. 2012). Although grid cells can represent the
naturalistic environment of a rat, the hippocampus may require
a larger representational capacity since place cells flexibly
recombine to uniquely represent different environments (Alme
et al. 2014), whereas grid cells within a module retain a rigid
spacing, orientation, and spatial relation among phases in any
environment (Yoon et al. 2013). Additionally, place cells must
incorporate the nonspatial stimuli involved in episodic memo-
ries (Fortin et al. 2002).

The flexible representation of the megamap also retains a
fine spatial resolution, as quantified by the least possible mean
squared error between the animal’s location and the location
determined from the stochastic spikes of place cells (Fig. 4).
Regardless of the distribution of place fields, the spatial reso-
lution is inversely proportional to the place field density across

Table 1.

large open-field environment

Poisson fit to experimental data from a moderately

Apparatus Source P..(1) Fields per Cell
Cylinder Experimental data 0.72 1.3 £0.03
Poisson fit 0.731 1.326
Relative error 0.02 0.02
Chamber floor Experimental data 0.11 34 *+0.11
Poisson fit 0.112 3.569
Relative error 0.02 0.05

Data are Poisson fits to experimental data from a moderately large open-field
environment (Fenton et al. 2008). In addition to the statistical agreement
shown in Fig. 2, the Poisson distribution [Eq. / with A = 1.65m™ > and A =
0.36 m? (cylinder) or 2.1 m? (chamber floor)] predicts the probability that an
active cell (cell with at least one place field in the given apparatus) has exactly
one place field within the cylinder or chamber floor [P, (1)]. It also predicts
the average number of place fields per active cell in both enclosures.

the population, p (Eq. 4). Consequently, the megamap has the
potential to represent arbitrarily large regions with the same
spatial resolution observed in small standard enclosures since
the density is constant (p = NA), but the spatial resolution of
the single-peaked place code grows linearly with the environ-
mental area, A, since p = N/A. Since the least mean squared
error (Eq. 4) does not depend on the place field width, o, the
single-peaked place code becomes coarser in larger environ-
ments even if the ensemble has a scaled representation in
which the place field size scales with the environmental area
(Muller et al. 1987; O’Keefe and Burgess 1996).

Ideal megamap. The representational capacity of the flexible
representation would be more than sufficient if hippocampal
place cells were a mere readout of the spatial signal carried by
its afferents. Indeed, feedforward models have demonstrated
how place fields may form from grid cells in the medial
entorhinal cortex carrying self-motion information (Azizi et al.
2014; Fuhs and Touretzky 2006; Lyttle et al. 2013; Mc-
Naughton et al. 2006; Monaco and Abbott 2011; Savelli and
Knierim 2010); boundary vector cells in the subiculum, para-
subiculum, and medial entorhinal cortex carrying information
relating to the boundaries of the environment (Burgess et al.
2000; Hartley et al. 2000; Lever et al. 2009); and granule cells
in the dentate gyrus providing a strong, sparse signal (Cerasti
and Treves 2010). However, place cells in the CA3 belong to
a network with strong recurrent collaterals (Johnston and
Amaral 1998) that likely processes its external inputs during
memory retrieval, as evidenced by phenomena such as pattern
completion in the CA3 (Harris et al. 2003; Lee et al. 2004;
Neunuebel and Knierim 2014; Vazdarjanova and Guzowski
2004).

We now shift our focus to how an associative network may
contribute to the formation and robustness of place cell activ-
ity. We adopt a standard firing rate model (Kali and Dayan
2000; Wilson and Cowan 1972) consisting of a network of
place cells with recurrent excitation, global feedback inhibi-
tion, and external input (Eg. 6). For simplicity, we assume the
external input carries an idealistic spatial signal (Eq. §). The
model could be generalized for more realistic external inputs,
including input from the lateral entorhinal cortex (Deshmukh
and Knierim 2011) or from any source mentioned above.
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Fig. 3. Representational capacity. The flexible representation on which the megamap is built alleviates the inherent size limitations of the single-peaked code
on which the standard attractor chart is built and even improves on the large representational capacity of the upstream grid cell network. A: the single-peaked
place code enforces a rigid spatial relation among place fields within a single environment, constraining a population of N place cells to support at most N unique
activity patterns (blue). The representational capacity of the grid cell population is similarly linear in the number of cells, although it is exponential in the number
of modules, M (green; Eq. 18). The representational capacity of the flexible representation approaches an exponential growth in the number of cells (red; Eq.

17), where p denotes the proportion of co-active cells in an activity bump. B: replication of A for N = 1,000.

We construct the ideal megamap by arranging place cells on
the megamap according to the flexible representation (Fig. 1C)
and setting the strength of recurrent connections optimally to
obtain the desired activity (Eq. 9) when the external input is
spatially tuned (Eq. 8 with I, = 0.3; see MATERIALS AND
METHODS). The resulting weights are correlated with the overlap
of place fields (Fig. 5, C-E), consistent with associative plas-
ticity. The overall network structure is a natural extension from
a small environment, in which a place cell is connected to its
single group of neighbors on the chart. In a large environment,
a place cell is connected to its multiple sets of neighbors on the
megamap (Fig. 5C). Within environments of less than ~9 m?,
the weights are approximated by the summation of Gaussian-
like tuning curves (Eq. 11), analogous to the classic multichart
model representing multiple environments. However, key dif-
ferences emerge in larger environments (see Gradual extension
of the megamap).

The activity of an ensemble of place cells within a small
environment is typically visualized by plotting the firing rate of

revealing a localized activity bump centered at the encoded
location (Samsonovich and McNaughton 1997). In the case
that a cell has multiple place fields, it is often plotted on the
chart at the center of its largest place field (Cerasti and Treves
2013). A new convention is needed for the megamap since a
cell may have many place fields of similar size. We visualize
activity on the megamap by plotting the firing rate of each cell
redundantly at all of its place field centers (Fig. 1C).

The network activity converges from any initial state to the
desired activity (Eq. 9) when /., = 0.3 (Fig. 5F). Although a
given place cell now appears multiple times on the megamap,
the ensemble of place cells encodes a location through a single
localized activity bump, exactly as shown on the single-peaked
chart (Fig. 5B). The difference is that scattered activity appears
throughout the megamap since the firing rate of a given place
cell is plotted redundantly (Fig. 5, A and B). With [, = 0.3,
the external input is about one-third of the strength of the
recurrent excitation at the equilibrium state (Fig. 6A) and binds
the activity bump to any location within the continuous two-

each place cell at its single location on the chart (Fig. 1A), dimensional space.
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Fig. 4. Spatial resolution, as quantified by the least mean squared error (LMSE) between the animal’s position and the position decoded from the stochastic spikes
of place cells with idealized Gaussian place fields (Eg. 3). A: the spatial resolution grows linearly with the area of the represented region if each place cell has
exactly one place field, whether the place field size is constant (Standard Rep.) or grows with the environmental size (Scaled Rep.). In contrast, the LMSE
is constant for any area given the Poisson distribution of place fields used for the megamap (Flexible Rep.). The apparent advantage of the single-peaked codes
over the flexible representation when A << 1/A is an artifact, since many cells in the flexible representation are silent in these small regions. The maximum
likelihood estimates (MLEs; Eq. 5) approximate the LMSE (black; Eq. 4), as expected since the MLEs are unbiased estimators. (The mean error along either
dimension is negligible: —0.0080 = 0.0076 cm for the single-peaked place code and 0.0006 % 0.0063 cm for the megamap.) B: the standard deviation of the
Gaussian place fields (Eq. 3) grows with the environmental area only for the scaled representation. C: the number of co-active place cells at any single position
is constant for the scaled and flexible representations but decreases for the standard representation, since the number of cells (N) is constant. For all simulations
presented, N = 22,500, 7 = 250 ms, A = —In(0.8) m 2 and a = 15 Hz (see MATERIALS AND METHODS for more details).
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Fig. 5. Structure of the ideal megamap. The external input is given by Eq. 8 with /., = 0.3. A: any cell in the megamap may have multiple, irregularly spaced

place fields, as illustrated by the firing rate (Hz) of cell I as the animal moves throughout the 9-m? region. B: the megamap encodes space through a localized
activity bump centered at the animal’s location. The activity bump is visualized by plotting the equilibrium firing rate of each place cell redundantly at all of
its place field centers. Each cell appears multiple times in the megamap, as illustrated in Fig. 1C. Scattered noise can be seen throughout the megamap, since
cells like cell 1 (whose firing rate is indicated by arrows) have place fields near the animal and elsewhere in the region. C: recurrent weights onto cell I are
visualized by plotting the weight from each presynaptic place cell redundantly at all of its place field centers. Cell I is driven by its 4 groups of neighbors on
the megamap. D and E: the spatial profile of the recurrent weights is approximated by wg,... the spatial profile were each cell to have a single place field (see
MATERIALS AND METHODS). The weight profile for cell 1 (D) is revealed by plotting the weight from each place cell onto cell I as a function of the minimal distance
between the place field centers of the 2 cells. In E, this weight profile is averaged over all cells in the megamap. F: the network state vector is visualized by
plotting the equilibrium state of each cell as a function of the minimal distance between its place field centers and the animal’s location, x. The corresponding
activity bump (B) approximates the desired activity (Eq. 9), providing a strong, stable signal for the animal’s location. The subthreshold fluctuations in the state
are due to the multipeaked structure of the recurrent weights. G: for the population of 11,204 place cells, 9,731 cells have at least one place field in the 9-m*

region with 2.3 = 1.3 fields per cell.

Megamap as an attractor. A network of neurons is called an
attractor network if its state always converges in time to a
stable, low-dimensional manifold (attractor) when the external
input is either absent or fixed. Rigorously, an attractor, A, is
defined as a minimal closed set in the state space of a dynam-
ical system such that any trajectory that starts in A stays in A,
and A attracts all trajectories that start in an open set containing
A (Amit 1989; Ermentrout and Terman 2010; Ivancevic and
Ivancevic 2007; Strogatz 1994). The attractor is continuous if
there is an infinitesimally small difference between attractor
states, as might be expected of an attractor representing a
continuous spatial environment.

Place cells on the megamap can be characterized as an
attractor network since their activity converges from any initial
state to a localized activity bump of approximately the same
size and shape in the absence of external input (Fig. 6A, far
right). Whereas the state space for N place cells is N-dimen-
sional, the attractor of the megamap is contained in a two-

dimensional space since any attractor state (stable equilibrium
activity bump) is characterized by the location it encodes in the
two-dimensional spatial environment. Strictly speaking, the
megamap supports a discrete set of point attractors rather than
the ideal continuous attractor. In the absence of external input,
the activity bump drifts over the megamap until remaining
fixed at one of a discrete number of preferred locations (Fig.
7A, far left).

The emergence of a discrete attractor is common in network
models intended to support a continuous attractor. The recur-
rent weights among a continuous attractor network must be
perfectly shift invariant, so introducing any random noise or
heterogeneities to these weights reduces the continuum of
attractor states to a discrete set of point attractors (Renart et al.
2003; Zhang 1996). This implies that the problem of drift is
also expected for the classic multichart model, because the
components of the recurrent weights needed for one chart
appear as random noise from the view of another chart (Sam-
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Fig. 6. Relative influence of internal network drive and external input on place cell activity of the megamap. A: the equilibrium state maintains its spatial tuning
as the external input weakens due to the increasingly dominant network drive via structured recurrent excitation among place cells in the megamap. According
to Eg. 6, the equilibrium state (red) is the sum of the recurrent excitation (blue), global feedback inhibition (green), and external input (Eg. 8) with amplitude
Ieax (black). The equilibrium state of each cell roughly decays with the minimal distance between the cell’s place field centers and the location encoded by the
activity bump. This location is the animal’s location when /., = 0.01 and depends on the random initial state otherwise. B: weak external input (/.. = 0.01
for this example) drives cells with place fields near the animal, providing an early spatial bias. The recurrent excitation initially has no spatial tuning since the
initial state is random, but it gradually amplifies the spatial bias to create a localized activity bump centered at the animal’s location. The equilibrium state is
reached by 500 ms. Colors are as defined in A. The initial feedback inhibition [w'f'(0) ~ 3] is not shown. C: the processing power of the network is revealed
by the nonlinear decay in the amplitude of the equilibrium state as the input amplitude decays linearly. The state amplitude is bounded below by q,, (dashed line),
which is indicated in A, far right. The amplitude of each term refers to the respective value for the cell with a place field at the animal’s location, as indicated

by the marked data points in A.

sonovich and McNaughton 1997). Drifting to point attractors
has also been shown explicitly in a two-dimensional attractor
map obtained by learning (Cerasti and Treves 2013). The
timescale of the drift (seconds) is about two orders of magni-
tude greater than the timescale of the intrinsic attractor dynam-
ics (tens of milliseconds), or the timescale for a random
activity pattern to collapse into a bump of stereotyped shape
(Wu et al. 2008).

The megamap may be considered as a quasi-continuous
attractor map for the following reasons. First, as mentioned
above, the megamap approximates a continuous attractor at the
timescale of intrinsic attractor dynamics. The slow drift of the
activity bump becomes even slower for larger networks (Fig.
7B) (Kali and Dayan 2000; Renart et al. 2003; Zhang 1996). In
addition, the drift could potentially be alleviated by introducing
other dynamical processes at slower timescales, such as ho-
meostatic synaptic scaling (Renart et al. 2003), enhancing the
firing of active cells (Stringer et al. 2002), and including
individual neurons with inherent persistent activity (Egorov et
al. 2002; Jochems and Yoshida 2013; Kulkarni et al. 2011;
Winograd et al. 2008; Yoshida and Hasselmo 2009). Finally,
the drift occurs when there is no external input, whereas the

hippocampus is unlikely to ever be devoid of external input.
Rather, it is reasonable to expect that the overall effect of the
rich array of multimodal hippocampal inputs about both the
environment and self-motion vary uniquely throughout a nat-
uralistic environment. External input anchors the activity bump
to any location on the megamap, even when the external input
is very weak, noisy, or incomplete.

Role of the external input. The megamap can account for
how the CA3 may robustly retrieve representations of large
spaces. When an animal is asked to retrieve a memory of a
familiar environment, hippocampal activity is likely driven by
both a strong recurrent network input and an external input
carrying various types of sensory information about the envi-
ronment. Given any initial state, the structured recurrent net-
work drive largely maintains the equilibrium activity bump on
the megamap as the external input weakens. A relatively weak
external input provides a spatial bias, binding the activity bump
to the animal’s location (Fig. 6). The network responds simi-
larly to a noisy external input due to its global inhibition (data
not shown). See Pattern separation and pattern completion for
examples of the network’s response to an incomplete input.
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Fig. 7. Binding of the activity bump to space. Relatively weak external input biases the activity bump for any location in the learned space, effectively rendering
the megamap a quasi-continuous attractor. A: for each of 400 trials, the initial state is set to the equilibrium state given external input with an amplitude of 0.3
centered at the animal’s location (black dot). When the external input amplitude is then reduced to the value indicated for /., the preexisting activity bump
persists but slowly drifts (black curve) until remaining fixed at the location encoded by the equilibrium activity bump (red dot). In the absence of external input
(far left), the activity bump drifts to one of a discrete set of point attractors. As I, increases, the activity bump travels a shorter distance along a similar
trajectory. B: increasing the number of place cells in the megamap, which increases the density of the population’s place fields, slows the drift of the activity
bump. The maximum drift speed when /., = 0 (solid curves) appears to follow the cumulative distribution function (CDF), F(N,.) = Fo(Ny/N, )27 (dashed
curves), where N, is the number of place cells with at least one place field, and F|, is the CDF for a network with N, = N, = 9,731.This empirical power
law implies that if the attractor network were to include all place cells in the CA3 (N, = 2 X 10°), then the probability that the drift speed exceeds 2 cm/s would
be 0.005 (dashed red curve). The CDF for each value of N, was constructed using the maximum drift speed for each of the 400 trials with /., = 0 The exact
network sizes are Nac‘ 9,731 (black), N, = 19,465 (blue) and N, = 38,756 (green). These networks correspond to one place field each 4 cm? (black), 2
cm? (blue), and 1 cm? (green). The drift speed was measured as the distance traveled each second. C: increasing the input magnitude decreases both the speed
of the drift and the distance traveled from the animal’s location. Both measures were averaged over the 400 trials for each value of /,,. Dashed curves show

1 standard deviation. Since the drift from any location becomes negligible given only a weak external input (/.. = 0.05), the megamap encodes any location
within the continuous space through a stable equilibrium activity bump. For A and C, N, = 9,731.

We next examine the cognitive map generated by the set of
all stable equilibrium activity bumps when the external input
has the form of Eq. 8 with a fixed /., = 0. The cognitive map
(megamap) converges from a discrete to a continuous map as
the external input strengthens, binding the activity bump to
space (Fig. 7, A and C). When [, = 0.3, the continuity of the
stable megamap is largely inherited from the continuity of its
strong external input. The processing power of the hippocam-
pal network is revealed in that relatively weak location-specific
input is sufficient to anchor the activity bump to any location
within the continuous learned region. For example, the activity
bump drifts only 0.27 = 0.20 cm when /., = 0.05 (Fig. 7A).
Although the external input has just 8% of the amplitude of the
equilibrium recurrent excitation (Fig. 6C), it provides a suffi-
cient bias for the animal’s location to overcome the drift over
the megamap and bind the activity bump to any location in the
large environment.

In summary, the megamap consists of a continuum of point
attractors, each corresponding to a different external input
centered at a given location in the environment. The megamap
is a continuous cognitive map with attractor dynamics in the
sense that it can denoise or pattern complete a corrupted input
at any location within the large, continuous environment.
Although these properties are expected of any standard attrac-
tor network representing small environments, the megamap

theory explains how this stability may be extended naturally to
large environments.

Gradual extension of the megamap. Since the megamap
does not require the animal to partition a large environment, it
is natural to gradually extend the megamap as the animal
explores novel subregions. We simulate an animal iteratively
learning a track 2,000 X 0.7 m?, as illustrated in Fig. 84. We
gradually extend the megamap to incorporate a contiguous
novel subregion by setting new place field centers according to
the Poisson distribution and updating the recurrent weights to
model the animal learning its local surroundings (the surround-
ing 0.7-m? subregion). Since the linear track may be consid-
ered as approximately one-dimensional, we also iteratively
enlarge a square environment to test the megamap’s represen-
tation of large two-dimensional spaces (Fig. 9A). The
megamap model in its current form is insensitive to the shape
of the environment, so the results for the linear track and
square environment are qualitatively the same. The key differ-
ence between the two simulations is that place fields are set to
be slightly larger for the square environment (o, = 8.97 cm
rather than 5.94 cm, leading to a place field radius of 17 cm
rather than 11 cm). Both simulations are consistent with the
experimental observation that when a rat initially explores a
novel subregion, new place fields tend to appear immediately
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Fig. 8. Gradual extension of the megamap representing a linear track. The optimal megamap (M°""; constructed via Eq. 10) continuously unfolds as the animal
explores novel terrains, stably representing newly acquired locations at the cost of previously learned representations. In contrast, a megamap constructed through
a widely used Hebbian learning rule (M*"™; constructed via Eq. 11) attempts to uniformly represent the entire track. A: at each iteration the animal learns a local
subregion (shaded red) consisting of fam111ar (blue) and unfamiliar (yellow) locations. B, left: as the learned portion of the track grows, M°™ continually learns
the representation of newly encountered locations (dark red), but its representation of previously learned locations gradually degrades (light red). For the latter
case, the place cell activity becomes tightly bound to the external input, converging to the activity of a feedforward model for which the internal network drive
has no spatial tuning (dashed black; Eq. 12). In contrast, the representation by M™"™ degrades uniformly throughout the learned track (blue). The sharp increase
in error for some locations near the end of the track is due to activity bumps that drift away from the animal’s location. Each data point shows the relative error
between the desired activity (Eq. 9) and the equilibrium activity when the animal is tested at a newly acquired location (x = x") or at an initially learned location
(x = x™) after iteration n of the track extension. Right, distal cells, which have no place field within 40 cm of the animal, receive no external input and are
inactive. For M°', the recurrent excitation causes their equilibrium state (distal state) to approach a subthreshold value. C: after learning the entire track, the
animal is tested at a recently learned location (x*™®) or at an initially learned location (x'™). M°P" accurately represents x*" (dark red) despite the 2,000 m of
track the animal has previously learned. However, the animal has effectively forgotten the beginning of the track, because the corresponding equilibrium state
(light red; Eq. 13) approximates that of the feedforward model (dashed black; Eq. 12). M**™ uniformly represents the entire track through a noisy activity bump

(blue), which may drift away from the animal’s location.

and grow more robust in time (Rich et al. 2014; Wilson and
McNaughton 1993).

At each iteration, we extend the megamap M°™ by updating
the weights according to Eq. 10. M°" continuously unfolds as
the animal explores novel terrains. The simulated animal ac-
curately learns new regions regardless of how much informa-
tion is stored in the recurrent weights (Figs. 8, B and C, and 9,
B and C, dark red). However, locations learned in the distant
past and never reinforced are gradually forgotten as the corre-
sponding recurrent hippocampal input loses its spatial tuning
(Figs. 8, B and C, and 9, B and C, light red). Existing
connections are pruned at each iteration so that the megamap
accurately represents the local subregion, resulting in a gradual
decrease in the size of a learned activity bump as more area is
added (Fig. 9D). As shown for the linear track, the equilibrium
activity bump representing '™ converges to that of a feedfor-
ward model for which the internal network drive has no spatial
tuning (Eq. 12). The corresponding activity bump is largely
controlled by the external input and thus is not robust to a
degraded input. The robustness through recurrent excitation
would be fully restored were the animal to revisit these
locations.

In our simulations, the megamap accurately represents ~350
m of the track (140 m? excluding the 15 cm boundaries of the

learning region) and 100 m? of the square environment before
the relative error in the equilibrium activity bump at any
location reaches 0.35. The large subregion accurately repre-
sented by M°P" continuously shifts along with the animal as it
learns the environment. Hence, this relatively small network of
~11,500 place cells can accurately represent an environment
comparable in size to the foraging range of a rat (Davis 1953;
Innes and Skipworth 1983; Lambert et al. 2008; Taylor 1978),
regardless of past experience.

We contrast these results with those found given M*"™, a
megamap constructed through the summation of Gaussian-like
tuning curves (Eq. 11). This simple model is commonly used to
construct attractor networks representing multiple environ-
ments (Rolls et al. 2002; Samsonovich and McNaughton 1997;
Solstad et al. 2014; Stringer et al. 2004) and approximates
basic Hebbian learning in small environments (Cerasti and
Treves 2013; Kali and Dayan 2000). Whereas M**™ and M°P
behave similarly in relatively small environments, differences
emerge as the memory load increases. Regardless of the
animal’s location, the noise in the equilibrium activity of M**™
grows as the learned subregion grows, eventually reaching a
breakdown point at which the network can no longer remember
old places or learn new places. This breakdown occurs because
the network uniformly represents the entire track, attempting to
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Fig. 9. Gradual extension of the megamap representing a square environment. A: at each iteration n, the megamap grows from (n — 1)> m? to n> m? by sequential
addition of (2n — 1) subregions of size 1 X 1 m?, from the bottom left to the top right, by Eq. 10 (M°?") or Eq. 11 (M*"™). B: after each iteration n, the equilibrium
activity bump is compared with the desired activity (Eq. 9) when the animal is placed at 50 random locations taken throughout the environment for A**™ (blue)
or within the last subregion learned (R,2; dark red) or first subregion learned (R,, light red) for M°*. As the megamap grows, M°"" accurately learns new
subregions (dark red) at the cost of previously learned locations (light red). M*“™ becomes increasingly inaccurate until reaching a breakdown point (~300 m?)
beyond which it can no longer represent any location (blue). C, left: after learning 100 m?, both M**™ and M°"* encode any location in the environment through
the equilibrium activity bump. Right, after learning 400 m?, M*"™ no longer has an equilibrium activity bump anywhere in the environment. The amplitude of
the equilibrium activity bump of M°"* depends on how recently the location was learned. D: for M°P', the animal gradually forgets locations previously learned
as the megamap grows. M always forms a strong equilibrium activity bump at newly acquired locations (red), but the equilibrium activity bump representing
R, decreases in size as the learned area increases (left; light red). For example, after learning 100 m?, the size of the equilibrium activity bump of M°" representing
any location decreases as a function of the area added to the megamap since learning that location (right). On the other hand, M*"™ uniformly represents the entire
learned region (right; blue). When the learned area becomes sufficiently large, M*"™ has no equilibrium activity bump, resulting in very little activity near the
animal’s location (/eft; blue). The local activity ratio is the ratio of net activity of the equilibrium and desired (Eg. 9) activity bumps, where the activity is summed
over all cells with a place field within 10 cm of the animal. E: the density of recurrent connections increases according to Eq. 19 for M**™ but approaches 0.25
for M°P. For all plots, equilibrium activity bumps are computed by setting the input by Eg. 8 with /., = 0.3.

eak

maintain the memory of places learned in the distant past and
never reinforced (Figs. 8 and 9; blue).

M™™ breaks down earlier for the square environment be-
cause place fields are larger, resulting in more co-active place
cells in each activity bump and a greater density (proportion of
nonzero weights) of recurrent connections among place cells
(Fig. 9E). In particular, if the area of the learned environment
is A, = kAA, then the density of recurrent connections in M**™
is given by

DAY =1-[1-284(1 — )], (19)

where r is the place field radius. With AA = 1 m? and r = 17
cm, the density of W for M*"™ is 0.74 after a 300-m” square

connections form. Adding homeostatic mechanisms (Abbott
and Nelson 2000; Vogels et al. 2011) to the basic Hebbian rule
used for M*"™ may better simulate local learning within a large
environment.

Emergent properties in large environments. The place cell
firing rates at recently learned locations provide no clear
indication of the size of the learned space (Figs. 8B, left, and
9B, dark red). However, the mean distal state, or the average
depolarization of cells without a place field near the animal,
differentiates small and large environments (Fig. 8B, right,
dark red). Recurrent excitatory input causes the distal state to
increase gradually as the learned space grows, eventually
converging to a subthreshold value. We next ask whether any

environment is learned (compared with a density of 0.43 for
300 m? when » = 11 cm on the linear track). This high density
implies that most place cells receive strong recurrent excitation
regardless of the animal’s location, overpowering the relatively
weak spatial bias introduced by the external input. Conse-
quently, the megamap can no longer represent any location
through a localized activity bump (Fig. 9, B-D). By 625 m?,
the activity no longer converges to a finite activity vector. In
contrast, the density of W for M°"" converges to about 0.25,
since previously set connections are eventually lost as new

emergent properties accompany this increased base depolariza-
tion in sufficiently large environments.

We find that a large megamap adapts to environmental
changes by simultaneously representing multiple learned
memories that have not previously been encountered to-
gether. The world changes constantly, and a new configu-
ration of landmark cues creates a conflict between the
external input and the memory embedded in the megamap.
For the example illustrated in Fig. 10A, the external input
vector is given by
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Fig. 10. Coactivation of embedded activity bumps. A megamap representing a sufficiently large environment can adapt to a changed environment by
simultaneously representing multiple learned memories never before encountered together. A: this schematic illustrates a cue conflict situation in which a learned
environment is changed such that cues that were originally in different locations are now present at the same location, inducing a competition between 2
embedded (learned) activity bumps. Top, the 2 activity bumps illustrated, which encode 2 locations through distinct subsets of active cells, were embedded into
the megamap when the animal learned the original environment. Botfom, in a small environment, the rigid attractor dynamics of the megamap cause the place
cell activity to converge to a single learned memory (WTA mode). In a large environment, the place cell activity stably encodes both cues through 2 co-active
activity bumps (combinatorial mode). B—E: for the simulation, the megamap representing 9 m* operates in the WTA mode (left), and the megamap representing
200 m? operates in the combinatorial mode (right). A 220 X 70-cm? subregion of each environment is shown. The input or state of each place cell is plotted

redundantly at all its place field centers from the original learned environment. B: the conflicting external input (Eq. /4 with Iécak =

B = 0.15) signals for

2 locations on the megamap. C: the initial state is random. D: 2 activity bumps initially appear on both megamaps. E: only 1 activity bump persists in time for
the small megamap, but the equilibrium state of the large megamap has 2 activity bumps encoding both cue sets. See Fig. 11, A and B, for more details.

Icomb(xl’ Xz;lll)eak’ Igeak) = I(Xl ;I;l)eak) + I(Xz;lgeak)’ (20)

where I is given by Eg. 8. This combined input simultaneously
signals for two sets of cues that the megamap associates with
two distinct locations, inducing a competition between two
attractor states. Consistent with standard attractor models of
place cells, a small megamap operates in a winner-take-all
(WTA) mode in which only one activity bump persists in time.
The state converges to an embedded attractor state whereby the
network fully represents one cue set while suppressing the
response to the other. When the linear track becomes suffi-
ciently large, however, the megamap transitions to a combina-
torial mode in which the network supports a stable discordant
configuration reflecting the multipeaked external input (Figs.
10 and 11, A and B).

A critical factor in the operational mode is the strength of
cross-excitation between activity bumps relative to the strength
of self-excitation within an activity bump. The increased base
depolarization in larger environments causes the activity
bumps to reinforce one another, because the corresponding sets
of active cells have overlapping place fields elsewhere in the
large space. This allows the megamap to simultaneously rep-
resent the two cue sets through two stable activity bumps. The
combinatorial mode emerges only when the animal accurately
learns its local surroundings (M°""). When the equilibrium
activity bumps grow along with the base depolarization (M*"™),
the megamap operates in the WTA mode regardless of the
environmental size. In this case the cross-excitation and self-
excitation grow at the same rate.

The differences for M°™ between the small megamap oper-
ating in the WTA mode and the large megamap operating in
the combinatorial mode extend beyond the co-activation of
activity bumps. The attractor network shows hysteresis in the
WTA mode, but the equilibrium state is independent of the
initial state when the megamap is in the combinatorial mode
(Fig. 11C). Furthermore, in the WTA mode, the megamap
shows a sharp transition between two embedded attractor states
when the external input gradually morphs between the two
corresponding learned patterns (Fig. 11D1). In the combinato-
rial mode, however, the megamap gradually transitions be-
tween attractor states, encoding the relative strength of the two
conflicting input signals through the relative amplitude in the
corresponding activity bumps (Fig. 11D2).

Pattern completion and pattern separation. We further test
the attractor dynamics of the small and large megamap by
driving the square megamap of various sizes with partial inputs
encoding two locations. Explicitly, a fraction (p,) of place cells
are driven by the input I(x'; 0.3), whereas the remaining place
cells are driven by I(xz; 0.3) (Eq. 8). We find that the square
megamap transitions between the same two operational modes
as found for the linear track.

As illustrated in Fig. 12A, the WTA mode results in the
classic sigmoidal curve characteristic of attractor networks
(Guzowski et al. 2004). All place cells representing x' are
active in the single equilibrium activity bump centered at x'
when p; > 0.5, even though up to 50% of these cells were
initially inactive and received no external input. This pattern
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Fig. 11. Dynamics of the operational modes. Conflicting external input signaling for 2 locations (x' and x?) reveals functional differences between a megamap
representing 9 m?, which operates in the WTA mode, and a megamap representing 200 m?, which operates in the combinatorial mode (Fig. 104). The external
input is given by Eq. 14, where Il’)eak = Ifwk = 0.15 for A-C. A: the small megamap ignores the signal for x' and fully represents x> (A7), whereas the large
megamap represents both locations (A2). The equilibrium state (Eq. state; data points; also shown in Fig. 10E) is plotted as a function of the minimal distance
between the given cell’s place field centers and x' (leff) or x> (right). Red curves show s, the equilibrium state given the single-peaked external input, I(x’; I’ _,,).
Only cells with place fields near x* are active for the small megamap, where the states of cells with place field centers within 50 cm of both x' and xB are
highlighted in cyan. B: although 2 activity bumps emerge from the random initial state of each megamap, the co-active bumps are stable only in sufficiently large
environments. We quantify the network’s representation of each location in 2 ways: err[u(r), s'], the relative 2-norm error between the state vector u(z) and s’
(solid); and act[u(z), s'], the ratio of the corresponding activity (Eq. 7) summed over all cells with a place field center within 10 cm of x’ (dashed). C: the small
megamap shows hysteresis (C7), but the large megamap combines the representation of each location regardless of the initial state (C2). Black curves show the
evolution of the activity ratio (left) and relative error (right) from their initial values (black dots) to their equilibrium values (red dots). D: the small megamap

pattern separates, its equilibrium state (u..) sharply transitioning from s* to s' as the external input gradually shifts from I(x*; 0.3) to I(x'; 0.3) (D). The large

megamap gradually transitions between the 2 embedded activity bumps, amplifying the difference in the input signals (D2). In both cases, u(0) = s>

completion is complemented by strong pattern separation,
whereby the activity bump representing x~ is suppressed so that
fewer place cells are active than receive input. The situation is
reversed for p; < 0.5, and the activity bump randomly repre-
sents either x' or x* (but never both) when p, = 0.5.

Large megamaps operating in the combinatorial mode show
strong pattern completion over any location, but their ability to
separate patterns is weaker since activity bumps reinforce
rather than suppress one another. Pattern completion is ob-
served throughout the large megamap when 0.2 = p, = 0.8,
although the activity bump is larger at locations recently
learned (Fig. 12B) than at locations initially learned and never
reinforced (Fig. 12C). For the former case (Fig. 12B), the error
in the equilibrium activity bumps representing both locations is
less than the error in the input for 0.4 = p; = 0.6. The network
robustly encodes both locations, encoding the relative strength
of inputs through the relative amplitude of each bump. For the

latter case (Fig. 12C), the error in the activity bumps follows
closely the error in the input, because the megamap has lost its
robustness to a degraded external input.

Incorporation of nonspatial information. Although space is
the most striking correlate of place cell activity, hippocampal
pyramidal cells also respond to nonspatial stimuli, such as
odors, objects, and pictures (Fortin et al. 2002; O’Keefe 2007).
The inherent flexibility of place cell recombinations permits
the megamap to carry nonspatial information at no additional
cost (see Figs. 14 and 15, Supplemental Videos S1 and S2).
(Supplemental material for this article is available online at the
Journal of Neurophysiology website.)

Suppose hippocampal pyramidal cells do not inherently
encode either space or nonspatial objects, but rather can be
responsive to both. Suppose further that a given salient non-
spatial object is encoded through an arbitrary activity pattern
across a subset of these cells. Through associative plasticity,
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Fig. 12. Pattern completion and pattern separation in large square environments. For each trial, a proportion (p,) of place cells are driven by the external input
I(x"; 0.3) and the remaining cells are driven by I(x*; 0.3) (Eq. 8). Given these competing, incomplete inputs, the megamap performs pattern completion over at
least 1 of the 2 locations regardless of the operational mode. A: the megamap representing 9 m? operates in the WTA mode. A1: when 80% of place cells receive
input for x', a single equilibrium activity (Eq. activity) bump fully represents x' (leff). When exactly half of the place cells receive input for each location,
the megamap still fully represents one location (right). A2: when p, > 0.5, pattern completion is apparent in that all place cells representing x' are active in the
equilibrium activity bump (solid red), even though only a fraction of these cells receive input (dashed red). The activity bump over x* is suppressed, because
only a fraction of place cells receiving input for x> are active (black). The opposite is true when p, < 0.5. When p, = 0.5, the activity bump represents either
x' or x?, but never both. A3: when p, > 0.5, the error in place cell activity encoding x' (solid red) is less than the error in the inputs (dashed red), a characteristic
of pattern completion. When p, < 0.5, the error in place cell activity is greater than the error in the inputs, a characteristic of pattern separation. B and C: the
megamap representing 100 m” operates in the combinatorial mode. B: when x' and x* are both in the last subregion learned (R, ), the megamap performs pattern
completion over both locations when 0.2 = p, = 0.8, because more place cells representing each location are active than receive input. Both locations are strongly
represented through 2 co-active equilibrium activity bumps when 0.4 = p, = 0.6, because the error in place cell activity is less than the error in the inputs at
both locations. Pattern separation is not as apparent as in the WTA mode since the weaker activity bump closely follows the external input. C: when x' and x*
are both in the first subregion learned (R,), the representation of any location is weaker. Although the megamap still performs pattern completion at all locations,
the error in place cell activity closely follows the error in the input. Prop. active, proportion of active cells; Rel. error, relative error.

cells encoding a nonspatial object should bind to place cells
representing nearby locations, effectively forming place fields
at the location of the object. In other subregions of the envi-
ronment, these same cells may encode other objects or loca-
tions. A set of nonspatial patterns can then be seamlessly
incorporated into the megamap by plotting the activity of each
cell at each of its place field centers on the megamap (Fig. 10),
including the locations of the objects they encode.

One may visualize the resulting activity of the attractor network
in two ways: by the megamap representation (Fig. 13A) or by
resorting cells so that each cell’s activity is plotted at a single
preset pixel (Fig. 13B). As the animal traverses the environment,
the former view shows the activity bump continuously encoding
space, whereas the latter view of the same network activity shows
the activation of discrete nonspatial memories (Figs. 14 and 15,
Supplemental Videos S1 and S2). As expected of a discrete
attractor, the megamap can perform pattern completion over these
nonspatial memories whether operating in the WTA mode (Fig.
14B) or the combinatorial mode (Fig. 15B). This dual interpreta-

tion may potentially aid in developing unified theories of spatial
and nonspatial memory to account for the “where” and “what”
components of episodic memory.

Nonspatial patterns can be bound to any attractor network
representing space, but the dual representation is possible only if
the nonspatial patterns are orthogonal or if place cells have the
flexible representation of the megamap. In the nonorthogonal
case, a cell participating in multiple nonspatial activity patterns
must have place fields at the locations of each object it encodes.
If the objects are placed randomly in the environment, the cell
must have multiple, irregularly spaced place fields to incorporate
the patterns into the cognitive map through the dual representa-
tion. Although one can model the associative binding of nonspa-
tial patterns to the single-peaked attractor chart (Rolls et al. 2002),
the spatial and nonspatial components of the environment would
be encoded separately by two populations of cells, namely, by
place cells and cells encoding objects.

Experimental predictions. The megamap theory posits that
hippocampal place cells are flexibly recombined to represent a
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Fig. 13. Schematic for the visualization of spatial and nonspatial information encoded by a single network activity vector. In this schematic 36 place cells
represent a 25 X 5-cm? region. A: for the megamap arrangement, each place cell is placed at each of its place field centers, as illustrated in Fig. 1C. The location
of each cell in the megamap is indicated by the cell number, and cells /-4 are additionally indicated by color. Cell 2 does not appear on the megamap because
it has no place fields in the region. Pos., position. B: for the cell arrangement, each place cell is placed at a single preset pixel, regardless of its place fields. The
2 arrangements give 2 different ways to visualize the same network activity pattern. Unless the nonspatial activity patterns are orthogonal, this dual interpretation
of the network activity requires place cells to have multiple, irregularly spaced place fields.

large space through one seamless, stable cognitive map. Unlike
the megamap, all other existing attractor models of place cells
imply an exclusion principle. That is, there exists a neighbor-
hood around each place field of a given cell in which the cell
is excluded from having an additional place field. For example,
a cell in the single-peaked chart (Fig. 1A) is excluded from
exhibiting another place field anywhere in the region. Simi-
larly, if the hippocampus were to partition an environment and
represent each subregion by a different chart (Fig. 1B), then a
cell with a place field in one subregion would be excluded from
firing at any other location in the same subregion. Whereas all
three models predict a localized activity bump over the ani-
mal’s location, the single-peaked cognitive map is clean, the
partitioned cognitive map restricts scattered activity to subre-
gions that do not contain the activity bump, and activity is
scattered throughout the megamap (Fig. 164). The differing
predictions of the three models could be tested through record-
ings in large two-dimensional environments, where the pre-
dicted scattered activity plotted redundantly at each cell’s place
field centers should be above the background noise.

A second distinguishing feature of the attractor models is the
distance to nearest neighbor, or the distance from the center of
a given place field to that of the closest place field of the same
cell. Place fields that are close to their nearest neighbors should
cluster near the artificial boundaries of a partitioned environ-
ment but should be evenly distributed throughout the megamap
(Fig. 16B). If place fields in the megamap follow the Poisson
distribution, then the distance to nearest neighbor follows the
exponential distribution (Eg. 16) over a long, narrow track,
which may be considered as approximately one-dimensional,
and follows the Rayleigh distribution (Egq. 15) over a large
two-dimensional environment (Figs. 2C and 16, C and D).
Whereas the probability decays monotonically as the distance
increases for the former case, the probability in a two-dimen-

sional environment peaks at 1/\/2mA ~ 85 cm for A = 0.22
m~ 2. In either case, the distance to nearest neighbor over the
megamap (but not over the partitioned environment) should be
statistically unchanged whether the nearest neighbor is taken
from place fields of the same cell or from place fields of any
other single cell with the same average density of place fields
(Fig. 16, C and D). With respect to these predictions, existing
data are consistent with the megamap theory (see DISCUSSION).

The megamap shares several properties with the well-stud-
ied single-peaked attractor map of a small standard recording

enclosure, including the relative stability of place fields in the
CA3 compared with that of the CA1 (Lee et al. 2004; Vazdar-
janova and Guzowski 2004), the persistence of place fields
without external input (Figs. 6A and 7A; Quirk et al. 1990), and
the sigmoidal relationship between changes in the spatial
cues and changes in the CA3 representation (Guzowski et al.
2004; O’Reilly and McClelland 1994) due to pattern com-
pletion and pattern separation (Fig. 12). In addition, as the
external input weakens, the amplitude of the activity bump
should be largely maintained (Fig. 6), but it should slowly
drift away from all but a relative few locations (Fig. 7). One
must control the external input into the hippocampus to test
these properties directly, perhaps by selective inactivation
of the entorhinal cortex and current injection into subsets of
hippocampal place cells.

The megamap provides a specific prediction for the func-
tional connectome in the hippocampus. According to the stan-
dard theory, each place cell forms strong recurrent connections
onto a single group of neighboring place cells on the chart. In
contrast, a place cell with multiple place fields should form
strong recurrent connections onto multiple groups of neighbors
on the megamap (Fig. 5C). This could be a factor behind the
variable spatial density of place fields found experimentally
(Rich et al. 2014), because it implies that a cell with more place
fields receives more recurrent excitation on average at a newly
encountered location. As a by-product of the unique structure
of its recurrent connections, the megamap may transition from
the winner-take-all mode to the combinatorial mode as the
learned environment becomes sufficiently large (Figs. 10 and
11). This transition should be accompanied by a loss of
hysteresis (Fig. 11C) and weaker pattern separation while
pattern completion remains strong (Fig. 11D and 12). These
effects are potentially observable in experiments.

The flexibility of place cell recombinations also permits the
megamap to incorporate nonspatial information through a
novel dual interpretation (Figs. 14 and 15). Although the
nonspatial patterns of these two examples are artificial, the dual
interpretation may provide a useful visualization tool for test-
ing hypotheses about the hippocampal representation of non-
spatial information. A plausible alternative theory is that a
continuous attractor network incorporates nonspatial informa-
tion through associative binding of nonspatial cells to place
cells (Rolls et al. 2002). A cell representing a nonspatial cue
should not exhibit place fields in the region according to this

J Neurophysiol » doi:10.1152/jn.00856.2015 « www.jn.org

LT0Z ‘L Jequiaidas uo 9c£°022 0T Aq /Bio ABojoisAyd-ulj/:dny wouy papeojumoqd



http://jn.physiology.org/

Pos. 2 (c

50

o 50

Megamap Arrangement

100

100
Pos. 1 (cm)

MEGAMAP: FLEXIBLE REPRESENTATION OF A LARGE SPACE

Equilibrium Activity

External Input

150

150
Pos. 1 (cm)

CHEESE

- CEREAL

WATER

[o2]
o

Cell Index 2
S

o

200 250 300 50 100

o

W

60

(]
o

[V

x

)
°
£
©
(@]

OO

200 250 300 50 100

Cell Arrangement

Equilibrium Activity

0 150
Cell Index 1

External Input

Equilibrium Activity
- WATER

150 200
Cell Index 1

250 300

250 300

885

Fig. 14. Dual interpretation of network activity patterns: example 1. The inherent flexibility of place cell recombinations permits the megamap to incorporate

nonspatial information at no additional cost. For this example, the megamap represents a rectangular region with 6 nonspatial cues. A: when the animal is located

at each of 7 locations, the equilibrium firing rates (Hz) are visualized in 2 ways by resorting cells (Fig. 13). The single network activity vector encodes the
animal’s location through a localized activity bump on the megamap (left) while simultaneously representing the nonspatial cue at that location (right). Place
cells must be flexibly recombined over the megamap since the subsets of active cells representing the 6 cues overlap one another. B: the attractor network can

perform pattern completion. Top, only cells representing the letter “W” receive external input. Bottom, cells representing the entire pattern (“WATER?”) are active

in the equilibrium activity. The initial state is random. Supplemental Video S1 shows the 2 visualizations as the animal moves continuously across the region.

theory, but it may have additional place fields elsewhere in the
region according to the megamap theory. This prediction is

experimentally testable.

DISCUSSION

We present an ideal model for a hippocampal attractor
network that stabilizes the flexible representation of a large
space. In addition to offering a concise description of the large

cognitive map, the megamap has several unique properties that
render it suitable as a basic building block for more compre-

hensive theories of hippocampal networks. The ideal megamap
treats all spatial locations uniformly, providing one seamless
cognitive map without any exclusion zones prohibiting place
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field multiplicity (Fig. 16). Its flexible representation also gives
the megamap the potential to represent spaces of any size with
a fixed spatial resolution (Figs. 3 and 4). Furthermore, the
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megamap is stable, because structured recurrent excitation
always attracts the network activity to a localized activity
bump bound to the animal’s location by a relatively weak,
noisy, or incomplete external input (Figs. 5-7 and 12). Finally,
the megamap can be extended continuously (Figs. 8 and 9) and
has emergent properties that permit it to adapt to environmental
changes (Figs. 10—12) and incorporate nonspatial information
(Figs. 14 and 15).
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The concept of the megamap emerges naturally when one
examines how hippocampal place fields are distributed in
larger environments. Earlier experiments, confined to smaller
chambers in which a place cell often shows no more than one
place field (Muller 1996; O’Keefe and Nadel 1978) have
understandably led to numerous attractor network models that
are variants of the same basic motif: a rigid map in which each
cell appears only once. These models naturally account for
place field stability in a static environment (Quirk et al. 1990;
Thompson and Best 1990) and coherence upon manipulation or
removal of environmental cues, particularly in the CA3, pre-
sumably due to its recurrent connections (Harris et al. 2003;
Johnston and Amaral 1998; Vazdarjanova and Guzowski
2004). However, models built on the framework of a single-
peaked attractor network do not extend naturally to large
environments (McNaughton et al. 2006). The idea of flexible
cell recombinations on which the megamap is based (Fig. 1C)
follows logically from the multiplicity and irregularity of place
fields in large environments (Fenton et al. 2008; Maurer et al.
2006; Park et al. 2011; Rich et al. 2014) and the Hebbian-like
associative plasticity observed in the hippocampus (Bliss and
Collingridge 1993; McNaughton and Nadel 1990; Vazdar-
janova and Guzowski 2004).

Although recent experimental studies have begun to quantify
the multiplicity of place fields in large environments (Fenton et
al. 2008; Maurer et al. 2006; Park et al. 2011; Rich et al. 2014),
it has long been known that a minority of place cells exhibit
multiple place fields in standard (<1 m?) recording enclosures
(Muller 1996; O’Keefe and Nadel 1978). Accordingly, many
previous modeling studies also allowed a place cell to have
multiple place fields within small standard environments (Bur-
gess 2007). For example, multiple place fields are expected if
the given place cell relies on sensory inputs whose combined
strength peaks at multiple spatial locations (Ji and Wilson
2007; Zipser 1985). More explicitly, multiple place fields have
been generated in models by combining inputs from boundary
vector cells in the subiculum, parasubiculum, and medial
entorhinal cortex (Burgess et al. 2000; Hartley et al. 2000;
Lever et al. 2009; O’Keefe and Burgess 1996); grid cells in the
medial entorhinal cortex (Azizi et al. 2014; Fuhs and
Touretzky 2006; Lyttle et al., 2013; McNaughton et al. 2006;
Monaco and Abbott 2011; Savelli and Knierim 2010); and
granule cells in the dentate gyrus (Cerasti and Treves 2010). A
minority of cells have also been shown to exhibit multiple
place fields in attractor network models generated from the

Fig. 15. Dual interpretation of network activity patterns: example 2. A: the
megamap represents a square region with 2 complex nonspatial patterns. When
the animal is located at each of 3 locations, the equilibrium firing rates (Hz) are
visualized in 2 ways (Fig. 13) to reveal the spatial (leff) and nonspatial (right)
information carried by the single network activity vector. The ghost effect in
the megamap arrangement at locations corresponding to an image (fop and
bottom) is a result of the 16% of cells that represent both images. This overlap
is much higher than the ~6% of overlap between any other pair of activity
bumps. As a result, the megamap has greater than average activity near the first
image as a reflection of the robust activity bump near the second image, and
vice versa. The multiplicity and randomness of the place code permit these 2
overlapping images to be embedded into the spatial framework of the
megamap. B: the attractor network can perform pattern completion. Top, only
cells representing the bun receive external input. Bottom, the equilibrium
activity represents the complete learned pattern. The initial state is random.
Supplemental Video S2 shows the 2 visualizations as the animal moves
continuously across the region.
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Fig. 16. Distinguishing features of the partitioned attractor map (Fig. 1B) and the megamap (Fig. 1C). A-C: the ensemble represents a 15 X 15-m? region (the
central 16-m? subregion is shown in A and B). Each place cell has at most 1 place field in each 1.5 X 1.5-m? chart of the partitioned region (left), and place fields
follow the Poisson distribution over the megamap (right). A: the models differ in the scattered activity surrounding the localized activity bump, where the desired
activity (Eq. 9, in Hz) of each place cell is plotted redundantly at all of its place field centers for both models. A place cell participating in the activity bump
is excluded from having an additional place field in the same chart of the partitioned attractor map, creating a single clean chart analogous to the active chart
predicted when the single-peaked attractor model is applied to multiple environments (Samsonovich and McNaughton 1997; Samsonovich 1998). A neighboring
chart becomes clean when the animal moves 60 cm to the right (bottom). In contrast, activity is scattered throughout the megamap, since a place cell representing
the animal’s location may have additional place fields anywhere in the region. B: place fields that are close to their nearest neighbors cluster near the artificial
boundaries between subregions of the partitioned attractor map, but they are distributed evenly throughout the megamap. Each data point indicates the center
of a place field that is within 30 cm of a second place field of the same cell. C: the Poisson distribution of place fields over the megamap implies that the distance
to nearest neighbor follows the Rayleigh distribution (black curve; Eq. 15), whether the nearest neighbor is taken from place fields of the same cell (blue) or
a single random second cell (red). The 2 distributions differ for the partitioned attractor map because of its exclusion principle. D: the ensemble represents a
100-m X 30-cm linear track, which may be approximated as a 1-dimensional environment. Top, similar to B, place fields within 50 cm of their nearest neighbor
from the same cell cluster near the artificial boundaries of the partitioned attractor map but are evenly distributed throughout the megamap. Botfom, similar to
C, the distribution of distances to nearest neighbor for the partitioned attractor differ whether considering the same cell or a different cell, but the distances follow
the exponential distribution (Eq. 16) over the 1-dimensional megamap.
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multichart architecture (Samsonovich and McNaughton 1997;
see Fig. 1B) or from an unsupervised learning process (Cerasti
and Treves 2013; Kali and Dayan 2000). The megamap pro-
vides a theoretical framework on which attractor networks such
as these could be extended to cover a large space by formal-
izing the ideal attractor network representing a large environ-
ment through one seamless cognitive map. Although additional
biological mechanisms could always be incorporated into the
model, the megamap is the simplest implementation for which
the flexible representation of a large space is compatible with
the stability of attractor dynamics.

Capacity of the megamap. The flexible representation of
place cells gives the megamap the potential to represent huge
areas, but the megamap’s capacity is limited by the number of
activity bump locations that can be accurately learned by the
attractor network (Figs. 8 and 9). Although we leave a detailed
study of the capacity for future work, in this report we provide
arough heuristic scaling argument for the megamap’s capacity.

It is well established that the number of distinct memory
patterns that can be stored in a Hopfield-type network grows
linearly with N, the number of cells (Amit 1989; Hopfield
1984). Similarly, the number of charts stored in the multichart
model grows linearly with N (Battaglia and Treves 1998;
Samsonovich and McNaughton 1997). It has also been shown
that the capacity is limited by the number of connections per
cell (Roudi and Latham 2007), but this should not be a limiting
factor in the rat CA3 with 10’ cells since a given pyramidal cell
has roughly 10* recurrent connections (Johnston and Amaral
1998). Hence, we ignore this factor below.

The capacity is also affected by the place field width, o,
which varies in the hippocampus from roughly 0.1 to 10 m
(Kjelstrup et al. 2008), and the place field density, A. Using
dimensional analysis (Barenblatt 1996), we propose that the
capacity (area covered by the megamap) scales as

A o« No“\P (21

for some constants « and 3. If we coarsen the spatial repre-
sentation by hypothetically increasing the unit length, A should
scale with o, without affecting the network dynamics. Re-
placing A with o, ? and matching dimensions in Eq. 21, we
obtain

A < No2.

In our simulations, we found that the megamap accurately
represents about 100 m* when N ~ 10 cells and o, ~ 0.1 m
(Fig. 9). Hence, we estimate that a megamap with N ~ 10°
cells and o, = 0.1 m should accurately represent about 1,000
m?. This capacity is likely more than sufficient for covering the
typical natural habitats of rats. Tracking experiments show that
in the wild, a rat often travels many hundreds of meters along
a primarily narrow passage, and so the total foraging area is
typically far below 1,000 m* (Davis 1953; Innes and Skipworth
1983; Lambert et al. 2008; Taylor 1978;).

Finally, larger place fields may greatly increase the
megamap coverage area. Assuming 1% of place cells (N = 10°)
have the place field width o, = 10 m, then A = 10° m?, which
could cover a 10-km X 10-m route. Of course, the spatial
resolution of such a megamap would be much worse due to the
smaller place field density (Eg. 4). In reality, the hippocampus
likely binds together megamaps of varying scale for a coarse

representation of long distances and a fine representation of
subregions of interest, such as feeding sites.

Poisson distribution of place fields. Cellular mechanisms
underlying the recruitment of place cells in new territories may
include the preexisting structure of recurrent connections (Dra-
goi and Tonegawa 2011), the excitability of place cells (Lee et
al. 2012), a pattern separation process in the dentate gyrus
(Aimone et al. 2011; Cerasti and Treves 2010; Leutgeb et al.
2007), and NMDA-dependent synaptic plasticity (Nakazawa et
al. 2004), perhaps enhanced by acetylcholine (Hasselmo 2006).
The megamap could be extended to incorporate these biolog-
ical mechanisms without affecting the qualitative results.

The megamap is the most flexible when the place fields of
each cell obey independent Poisson processes. The Poisson
distribution of place fields approximates experimental data
from a moderately large open-field environment (Fig. 2, Table
1). However, the Poisson distribution underestimates the num-
ber of cells with a relative large number of place fields, as
shown by the prolonged tail in Fig. 2B. One can adapt the
megamap to incorporate a variable place field density so that a
minority of cells remain silent or have a relatively high pro-
pensity for exhibiting place fields. This modification is consis-
tent with the data recorded over long tracks, for which place
fields of individual cells follow the Poisson distribution with a
variable field density among cells (Rich et al. 2014). It might
also account for the exponential distribution of place fields
across the population previously reported for long tracks (Mau-
rer et al. 2006). As predicted by the megamap, the distance to
nearest neighbor appears to follow the exponential distribution
over a long track (Rich et al. 2014), to follow the Rayleigh
distribution over a two-dimensional environment (Fig. 2C),
and to show no clustering (Fenton et al. 2008; Park et al. 2011).
Although the hippocampal representation of large open-field
environments (>3 m?) is unknown, the hippocampus has been
shown to uniquely represent several small open-field environ-
ments through global remapping among place cell ensembles
in the CA3 (Alme et al. 2014). The representations appear to be
independent except for a small minority of cells that fire in all
environments. These results may point to a large hippocampal
capacity, consistent with the megamap theory.

Union of stability and flexibility. Stability and flexibility are
two desirable properties of any hippocampal network model,
but they naturally counteract one another. Although the activity
bump drifts away from all but a discrete set of locations on the
isolated megamap, relatively weak external input couples with
strong, structured recurrent excitation to compensate for this
loss of stability when the spatial representation is maximally
flexible (Fig. 7). The megamap could be driven by more
realistic external input than presented here. For example, place
cells could track a weak path integration signal from grid cells
innervating their distal dendrites (McNaughton et al. 2006).
Similarly, a noisy signal for external landmarks carried by
afferents in the lateral entorhinal cortex (Deshmukh and Kn-
ierim 2011; Knierim 2006; Knierim et al. 2014) could be
sufficient for initial localization or error correction on the
megamap.

Flexibility in the spatial representation leads to flexibility in
the attractor map, permitting the megamap to stably combine
embedded activity bumps. The combinatorial mode (Figs. 10
and 11) could lead to new associations or even permit partial
remapping (Colgin et al. 2008; Jeffery 2011) if multiple
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megamaps were to represent distinct subsets of cues, as was
shown for single-peaked attractor maps (Stringer et al. 2004).
It also allows the activity pattern to gradually transition from
one embedded attractor state to another (Fig. 11D), raising the
possibility of an alternative explanation for the intermediate
activity patterns found experimentally (Colgin et al. 2010;
Leutgeb et al. 2005) to those offered by recent modeling
studies (Rennd-Costa et al. 2014; Solstad et al. 2014). On a
higher level, the combinatorial mode is conducive for combin-
ing memories never encountered together to simulate possible
future episodes, an ability shown to rely on the same circuits
critical for episodic memory in humans (Schacter and Addis
2007). Although other attractor models have modified the
dynamical system to sustain multiple activity bumps (Molda-
karimov et al. 2005; Samsonovich 1998; Stringer et al. 2004),
the combinatorial mode emerges spontaneously in a suffi-
ciently large megamap.

Union of spatial and nonspatial representations. The
megamap is locally continuous in the sense that the patterns of
active cells representing two nearby locations are similar, but
the patterns become uncorrelated as the distance exceeds the
place field size. Uncorrelated activity patterns, like the discrete
set of patterns stored in a Hopfield network (Hopfield 1982),
may encode information about an environment in addition to
the animal’s spatial position. The megamap can store any
nonspatial pattern if its active cells have place fields at the
corresponding location. This should occur naturally through
associative plasticity, because cells representing a salient non-
spatial cue should be co-active with place cells representing
nearby locations.

It has been suggested that hippocampal networks may en-
code discrete attractors encoding nonspatial information,
whereas the continuous attractor dynamics apparent in place
cell activity may be a mere reflection of the dynamics in the
upstream grid cell network (Jeffery 2011; Knierim and Zhang
2012). We propose that the hippocampal attractor network can
be considered both continuous and discrete, depending on
one’s point of view. The megamap arrangement reveals a
quasi-continuous attractor map encoding space, whereas the
cell arrangement of the same activity patterns reveals a discrete
set of nonspatial memories. This novel perspective offered by
the dual interpretation unites spatial and nonspatial represen-
tations under a single principle of flexible cell recombinations.

The megamap is the first attractor model for which the dual
interpretation (Figs. 13—15) is possible. In models nonspatial
memories are typically represented by random recombinations
of cells (Hopfield 1982), just as the megamap represents
distinct locations through random recombinations of place
cells. Since the cues may be placed anywhere in the region, a
cell representing multiple cues must have multiple, irregularly
spaced place fields according to the dual interpretation. Simi-
larly, there should be no correlation among place field pairs.
These two requirements are the exact properties of the
megamap that distinguish it from standard attractor models of
place cell networks. Although previous models have shown
how an autoassociative network may bind spatial and nonspa-
tial information (Rolls et al. 2002), the dual interpretation is not
possible for these models unless the nonspatial patterns are
orthogonal. The megamap can incorporate any activity pattern,
even complex visual patterns such as faces (Fig. 15), as long as

distinct patterns correspond to well-separated locations in the
environment.

Megamap as a building block. The megamap can be used to
construct more general theories in the same way as the single-
peaked attractor map (chart) has been used. Although we have
focused on a single megamap here, it is straightforward to
embed multiple megamaps in the same network. For example,
a single network may store multiple megamaps representing
multiple environments (Samsonovich and McNaughton 1997)
or distinct subsets of cues in the same environment (Stringer et
al. 2004), permitting global and partial remapping, respec-
tively. Similarly, the megamap may encode context through a
variable firing rate (Solstad et al. 2014), permitting rate remap-
ping. Megamaps with different scales (Kjelstrup et al. 2008)
could be coupled together for a coarse representation of long
distances and fine representations of subregions of interest,
such as feeding sites. Since the animal’s path between feeding
sites is likely long and narrow, the learning procedure of the
model may need to be adapted in this case to incorporate
known spatial properties in a one-dimensional environment,
such as the directionality of place fields (Muller et al. 1994).
Using the megamap as the building block for these models
instead of a single-peaked continuous attractor map eliminates
the size limitations and provides the flexibility to adapt to
environmental changes and to naturally incorporate nonspatial
information.
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